dual-stack - определение. Что такое dual-stack
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое dual-stack - определение

VERSION 6 OF THE INTERNET PROTOCOL
IP version 6; Ipv6; A6 record; IPng; IP Next Generation; Dual-stack; IPv4-compatible address; IPV6; IPv4 mapped address; IPv4-mapped address; Internet Protocol Version 6; IP v6; Internet Protocol version 6; IPv6 internet; IPv6 Internet; Simple Internet Protocol Plus; Ipng; SLAAC; IPv6 Security; Internet protocol version 6; IP Version Six; IPv6 stateless address autoconfiguration; Dual Stack; Dual-stacked; Dual stacked; Dual stack; Shadow network; Internet protocol version six; Ip6-loopback; Ip6-localhost; Internet Protocol, Version 6; Internet Protocol Next Generation
  • Decomposition of the dot-decimal [[IPv4 address]] representation to its binary value
  • IPv4-compatible IPv6 unicast address
  • IPv4-mapped IPv6 unicast address
  • IPv6 Prefix Assignment mechanism with IANA, RIRs, and ISPs
  • A general structure for an IPv6 unicast address
  • Glossary of terms used for IPv6 addresses
  • The global unicast address structure in IPv6
  • Several examples of IPv6 extension headers
  • The Link-Local Unicast Address structure in IPv6
  • Multicast structure in IPv6
  • IPv6 packet header
  • Monthly IPv6 allocations per [[regional Internet registry]] (RIR)

dual-stack         
<networking> A term used to describe a network node running both IPv4 and IPv6 protocol stacks (or possibly others) at the same time. Such a machine can act as a {protocol converter} between the two networks. (2000-12-19)
Call stack         
  • green}}), which is the currently executing routine
STACK DATA STRUCTURE THAT STORES INFORMATION ABOUT THE ACTIVE SUBROUTINES OF A COMPUTER PROGRAM
Stack pointer; Stack frame; Frame pointer; Activation record; Stack unwinding; Function stack; Call Stack; Run-time stack; Control stack; Process stack; Runtime stack; Framepointer; Callstack; CallStack; Call frame; Call chain; Display register; Access link; Mark pointer; Return pointer; Callstacks; Activation frame; Outgoing arguments area; Callout area; Call stack inspection; Call Frame Information; Stack pointe
In computer science, a call stack is a stack data structure that stores information about the active subroutines of a computer program. This kind of stack is also known as an execution stack, program stack, control stack, run-time stack, or machine stack, and is often shortened to just "the stack".
stack frame         
  • green}}), which is the currently executing routine
STACK DATA STRUCTURE THAT STORES INFORMATION ABOUT THE ACTIVE SUBROUTINES OF A COMPUTER PROGRAM
Stack pointer; Stack frame; Frame pointer; Activation record; Stack unwinding; Function stack; Call Stack; Run-time stack; Control stack; Process stack; Runtime stack; Framepointer; Callstack; CallStack; Call frame; Call chain; Display register; Access link; Mark pointer; Return pointer; Callstacks; Activation frame; Outgoing arguments area; Callout area; Call stack inspection; Call Frame Information; Stack pointe

Википедия

IPv6

Internet Protocol version 6 (IPv6) is the most recent version of the Internet Protocol (IP), the communications protocol that provides an identification and location system for computers on networks and routes traffic across the Internet. IPv6 was developed by the Internet Engineering Task Force (IETF) to deal with the long-anticipated problem of IPv4 address exhaustion, and is intended to replace IPv4. In December 1998, IPv6 became a Draft Standard for the IETF, which subsequently ratified it as an Internet Standard on 14 July 2017.

Devices on the Internet are assigned a unique IP address for identification and location definition. With the rapid growth of the Internet after commercialization in the 1990s, it became evident that far more addresses would be needed to connect devices than the IPv4 address space had available. By 1998, the IETF had formalized the successor protocol. IPv6 uses 128-bit addresses, theoretically allowing 2128, or approximately 3.4×1038 total addresses. The actual number is slightly smaller, as multiple ranges are reserved for special use or completely excluded from use. The two protocols are not designed to be interoperable, and thus direct communication between them is impossible, complicating the move to IPv6. However, several transition mechanisms have been devised to rectify this.

IPv6 provides other technical benefits in addition to a larger addressing space. In particular, it permits hierarchical address allocation methods that facilitate route aggregation across the Internet, and thus limit the expansion of routing tables. The use of multicast addressing is expanded and simplified, and provides additional optimization for the delivery of services. Device mobility, security, and configuration aspects have been considered in the design of the protocol.

IPv6 addresses are represented as eight groups of four hexadecimal digits each, separated by colons. The full representation may be shortened; for example, 2001:0db8:0000:0000:0000:8a2e:0370:7334 becomes 2001:db8::8a2e:370:7334.